0040-4020(95)00602-8 # Diastereoselective Reduction and Organometal Addition to 1-Alkoxy-2phenylalkan-3-ones ## Giuseppe Guanti,* Luca Banfi, and Renata Riva Istituto di Chimica Organica dell'Università degli Studi di Genova, e C.N.R., Centro di Studio per la Chimica dei Composti Cicloalifatici ed Aromatici, corso Europa 26, I-16132 GENOVA (Italy) **Abstract:** The reduction with various hydrides and the addition of some Grignard reagents and alkyl lithiums to various protected 1-hydroxy-2-phenylalkan-3-ones furnished respectively the corresponding secondary and tertiary alcohols with a diastereoselectivity from good to excellent. Both processes were stereoconservative, no racemization being observed. 2-Substituted 1,3-propanediol derivatives are very useful intermediates often used in the synthesis of many biological targets. $^{1.2}$ One of the main reasons of their success is the peculiar structure (C_s -symmetry) of these compounds which allows to obtain, after their asymmetrization, both enantiomers by a simple protection-deprotection trick. $^{1.3}$ Enzymes, and especially lipases, have been shown to be particularly effective for preparing in high enantiomeric excess some chiral building blocks of this type, which have been used for many synthetic applications. 2 An important aspect of the chemistry of these compounds is that, once asymmetrized, they can be converted through selective manipulation of the alcoholic function into the corresponding aldehydes or ketones, that can in turn undergo further elaborations with the creation of new 10344 G. GUANTI *et al.* chiral centers, hopefully in a stereocontrolled manner.⁴ A crucial role in these transformations has been shown to be played by the type of substituent present in position 2: small changes in its structure were found to have a great influence either on the asymmetrization step or on the stereospecificity of further reactions. In the last years we have been particularly active in this field and we recently published an efficient procedure based on a chemoenzymatic approach for preparing both enantiomers of many monoacetylated 2-aryl-1,3-propanediols. ^{2d,5} We ^{2d,f} and others⁶ have already used some of these units as precursors in some synthetic applications. Now, within a research program on the preparation of some asymmetrized 2-alkenyl- and 2-aryl substituted 1.3-propanediols and on their exploitation in the asymmetric synthesis of polystereogenic targets, we have prepared a series of differently O-protected 1-hydroxy-2-phenylalkan-3-ones and studied their reduction with various metal hydrides and the addition of some organometals to them, with the purpose to define the best protocol for controlling the stereochemistry of these reactions. The results are herein reported. The ketones were prepared according to Scheme 1, starting from monoacetate 1. In this work we utilized the (S) monoacetate derived from monohydrolysis of the diacetate (91% e.e.). However it must be stressed that an optimized acetylation procedure of the corresponding diol can now furnish the (R) enantiomer of 1 with 97% enantiomeric excess.⁵ (R) Monoprotected diols 3,4 were obtained in high yields by a simple protection-deacetylation procedure.⁷ In the case of 2 we utilized a longer, though high yielding, procedure, because, as already noted for a related compound.^{2f} direct benzylation of 1 suffered from low yield or partial racemization. By this route the (S) monobenzyl ether 2 was obtained.⁸ The oxidation of the primary alcoholic function was realized with Jones methodology to give acids 5, 6, 7; they were transformed into the corresponding hydroxamates 8, 9, 10 by reaction with N,O-dimethylhydroxylamine in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (WSC).⁹ The transformation into ketones 11a-k was realized by treatment of 8, 9, 10 with the corresponding organometals.¹⁰ We then examined the stereoselective reduction of these ketones. For this study we chose to use three reducing agents: L-SelectrideTM, DIBALH, and the system DIBALH/MgBr₂. The first two were selected as typical example of basic or acidic hydride-donor reagents. The third one was picked out because it was recently found by us to be the reagent of choice for the diastereoselective reduction under chelation control of differently protected α,α -bis(hydroxymethyl)ketones. The results, depicted in Table 1, show that in all cases the *anti* stereoisomers 12 were preferentially formed, best results being achieved with the bulky basic hydride-donor agent L-SelectrideTM as reducing agent and *tert*-butyldimethylsilyl as protecting group. This outcome can be explained with a Felkin-Anh model¹¹ where the phenyl group plays the role of "large" group, being perpendicular to the carbonyl function (Figure 1). Although previous studies have demonstrated that, in related reductions of α -methyl- α -aryl ketones, the phenyl acted as "large" group, this was not obvious in our case, since the masked hydroxymethyl group, especially when the protecting group is the bulky TBDPS, could in principle compete with the phenyl in size. Thus, the fact that increasing the bulkiness of the protecting group is even beneficial for stereoselectivity implies that the tendency for phenyl group to dispose perpendicularly to the carbonyl is indeed very high, probably not only on steric grounds, but for stereoelectronic reasons as well. The same outcome could also be explained by taking | Table 1: reduction of 1-alkoxy-2-phenylalkan-3-ones | | | | | | | | | | | | |---|-----------------------------|-------|----------------|----------------------|----------------------------|---------------|------------------------------|--------------|----------------------|--------------|--| | | | OR1 | | | OR1 | | | | OR1 | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | | | | | | L-Selectride TM | | DIBALH/
MgBr ₂ | | DIBALH | | | | entry | ketone
(abs.
config.) | R^I | R ² | $[lpha]_D$ of 12^a | 12 : 13 ^b | yield
(%)° | 12 : 13 ^b | yield
(%) | 12 : 13 ^b | yield
(%) | | | 1 | 11a (R) | Bn | allyl | - 18.1° | 97.8 : 2.2 | 74 | 63.5 : 36.5 | 68 | 69.7 : 30.3 | 83 | | | 2 | 11b (S) | BOM | allyl | + 10.9° | 84.6 : 15.4 | 65 | 73.4 : 26.6 | 98 | 81.5:18.5 | 98 | | | 3 | 11c (S) | BOM | n-Bu | + 17.4° | 99.1:0.9 | 78 | 67.3 : 32.7 | 68 | 79.3 : 20.7 | 68 | | | 4 | 11d (S) | TBDPS | n-Bu | + 7.6° | 99.7 : 0.3 | 80 | 77.9 : 22.1 | 69 | 69.3 : 30.7 | 78 | | | 5 | 11e (S) | BOM | Ph | + 50.1° | 99.7 : 0.3 | 91 | 92.6 : 7.4 | 95 | 90.5 : 9.5 | 89 | | | 6 | 11f(S) | TBDPS | Ph | + 36.5° | 99.7 : 0.3 | 82 | 91.0 : 9.0 | 79 | 84.5 : 15.5 | 72 | | | 7 | 11g(S) | BOM | vinyl | - 7.4° | 1,4-reduct | iond | 75.8 : 24.2 | 78e | 81.5 : 18.5 | 48e | | | 8 | 11h (S) | TBDPS | vinyl | _ f | 1,4-reduct | tiond | 81.2 : 18.8 | 60e | 73.0 : 27.0 | 64e | | | 9 | 11i (S) | BOM | heptynyl | - 5.8° | 94.1 : 5.9 | 85 | 65.4 : 34.6 | 93 | 66.9 : 33.1 | 97 | | | 10 | 11j (S) | TBDPS | heptynyl | - 10.3°g | > 99 : 1 ^h | 90 | 63.7 : 36.3h | 97 | 69.3 : 30.7h | 87 | | <u>Note</u>: a) measured on CHCl₃ solution (c \equiv 1); b) determined by HPLC analysis of the mixture; c) yield not optimized and referred to the diastereomeric mixture; d) together with many other byproducts; e)1.4-reduction product also isolated (that is 11k or the corresponding TBDPS protected ketone); 9% (DIBALH/MgBr₂), 21% (DIBALH) in entry 7; 15% (DIBALH/MgBr₂), 21% (DIBALH) in entry 8; f) not determined due to the impossibility to isolate 12h not contaminated by 13h; g) determined on the diastereomeric mixture derived from L-SelectrideTM reduction (d.r > 99%); h) determined by ¹H-n.m.r., because the diastereomers are not separated enough in HPLC. into account a cyclic chelated transition state involving the β -oxygen (Figure 1). In this hypothesis, though, one would have expected a decrease in stereoselectivity on passing from the chelation-favouring BOM protecting group, to the chelation-disfavouring silyl ether. ¹³ On the contrary, as already stated, the TBDPS was the best protecting group. The relatively poor results achieved with the system DIBALH/MgBr₂ were in some way surprising. On the basis of our previous results, ^{4a} showing that this system was excellent in promoting chelation-control in some 2-substituted-3-alkoxyketones, and in view of the possibility to match Felkin and chelation control in the present case, we would have expected a high induction, at least for BOM-protected ketones. On the contrary, induction was usually unsatisfactory and no influence of protecting group was evidenced. At present we have no rationale for this behaviour. However it should be noted that the low *anti/syn* ratio obtained with DIBALH/MgBr₂ in the actual case was confirmed, in preliminary experiments, also using 3-alkoxy-2-methyl ketones derived from 3-hydroxy-2-methylpropanoic acid. Besides L-Selectride. TM we explored other "basic" hydrides, like NaBH₄, Zn(BH₄)₂, and NaBH₄/CeCl₃. The results were still good, but inferior to those achieved by L-SelectrideTM. Finally, the collected results show that the influence of R² group was not dramatic. However it is worth 10346 G. GUANTI et al. noting that for R^2 = phenyl or vinyl, good results were also realized with DIBALH and DIBALH/MgBr₂. In the latter case this fact is quite useful, since L-SelectrideTM gives, as expected, 1,4-reduction. The relative configuration of all reduction products was established through conversion into O,O-iso-propylidene derivatives and by ¹H and ¹³C-n.m.r. analysis of them (Scheme 2):¹⁴ we observed that prevailing alcohols **12** gave always the cis O,O-*iso*-propylidene derivative, while alcohols **13** gave the corresponding trans diastereoisomer. In order to find an access to the minor syn diastereoisomers 13, we studied also the complementary organometal
addition to the aldehydes derived from oxidation of 2-4, but preliminary results were not encouraging, most of all because of the unavoidable partial racemization occurring during the oxidation even | Table 2: addition of organometallics to 1-alkoxy-2-phenylalkan-3-ones | | | | | | | | | | | |---|-----------------------|----------------|--------------------------|--------------------------|---------------------------------|---|-------------------------------|--|--|--| | | | ОВОМ | | _0 | вом | овом | | | | | | | Ph 11 b-f, k | R ² | R ³ - Met | Ph 16 a-j O anti | H ² + | Ph R ² R ³ OH Syn | | | | | | entry | ketone R ² | | R ³ -Met | prevailing
product 15 | yield (%) ^a
of 16 | 16 : 17 | [α] _D ^b | | | | | 1 | 11k | Et | vinyl-MgBr | 16a | 67 (72) | > 98 : 2 ^{c,d} | - 8.28°e | | | | | 2 | 11k | Et | allyl-MgBr | 16b | 92 | 91.6 : 8.4° | + 15.66°e | | | | | 3 | 11k | Et | n-BuLi | 16c | 68 (70) | 94.6 : 5.4 ^{d,f} | + 7.13°e | | | | | 4 | 11k | Et | PhMgBr | 16d | 84 | 97.5 : 2.5g | + 4.65°h | | | | | 5 | 11k | Et | propargyl-MgBr | 16e | 95 | > 98 : 2 ^{c,d} | + 34.56°e | | | | | 6 | 11k | Et | heptynyl-Li | 16f | 46 | 98.8 : 1.2g | - 16.27° h | | | | | 7 | 11e | vinyl | EtMgBr | / | 0 | _ | - | | | | | 8 | 11e | vinyl | EtMgBr/CeCl ₃ | 1 | Oi | - | - | | | | | 9 | 11b | allyl | EtMgBr | 16g | 83 (98) | > 98 : 2 ^{c,d} | + 3.58°e | | | | | 10 | 11c | n-Bu | EtMgBr | 16h | 88 | > 95 : 5 ^{d,f} | + 7.13°e | | | | | 11 | 11d | Ph | EtMgBr | 16i | 99 | 99.5 : 0.5g | + 26.84°h | | | | | 12 | 11f | heptynyl | EtMgBr | 16j | 86 | 95.8 : 4.2g | - 13.49° h | | | | | a7 | | | | | | | | | | | <u>Note</u>: a) in brackets the yield on unrecovered starting material is reported; yields are unoptimized; b) measured on CHCl₃ solution (c = 1): c) determined by ¹H-n.m.r.; d) only signals due to one diastereoisomer detected in the spectrum; e) determined on the analyzed diastereomeric mixture; f) determined by ¹³C-n.m.r.; g) determined by HPLC; h) determined on a purified sample of 16 not contaminated by 17; i) some unreacted starting material and many other products were formed. using modified Swern procedures. 16 On the contrary we demonstrated that no loss of optical purity had occurred in the acylation-reduction procedure by ¹H-n.m.r. analysis of Mosher's esters of reduction products 12. This fact is important since, as already pointed out, when we attempted to functionalize asymmetrized 2-aryl-1,3-propanediols like 2-4, via the corresponding aldehydes or different activated carboxylic derivatives like the imidazolide, the S-(2-pyridyl) thioate or the mixed anhydride, ^{2d} some degree of racemization was always observed. The here reported acylation-reduction strategy represents therefore the procedure of choice for the stereoconservative production of secondary alcohols like 12. We have also studied the addition of some organometals to ketones 11^{17} and the results are collected in Table 2. Although tertiary alcohols were not always obtained in high yields, ¹⁸ the stereoselectivity was generally excellent (> 9:1), either employing organo-lithium or Grignard reagents. The relative stereochemistry of the obtained alcohols was demonstrated in this way: **16d** and **16i** were converted into the corresponding β -lactones **19** and **22** as reported in Scheme 3.¹⁹ The crude products were characterized by ¹H-n.m.r. and I.r.. The former showed clearly that this process was stereospecific, **16d** and **16i** giving **19** and **22** respectively as exclusive products. These β -lactones were directly transformed into the corresponding olefins **20** and **23** by thermal decarboxylative elimination, without further purification (due to their propensity to spontaneously decarboxylate on silica gel). This reaction was mostly stereospecific, each lactone affording nearly exclusively the corresponding alkene. The configuration of olefins **20** and **23** was unambiguously assigned as *E* and *Z* respectively by comparison of their ¹H n.m.r. spectra with those reported in the literature for (*E*)- and (*Z*)-1.2-diphenyl-1-butene. ²⁰ So, since the formation of β -lactones by reaction of a 2-hydroxyacid with benzenesulfonyl chloride proceeds with retention of configuration ^{19,21} and since thermal decarboxylative elimination is reported to occur with a *syn* mechanism, ^{19,22} we can reasonably conclude that alkene **20** can only derive from alcohol **16d**, while alkene **23** must be obtained from **16i**. The relative configuration of β -lactons **19** and **22** was also corroborated by comparison of the -C H_2 CH₃ chemical shifts in ¹H-n.m.r. spectra. An aryl group *cis* to Et is actually expected to shield the -C H_2 -. ^{19,22} In our case we observed δ = 1.75 for **19** (Ph *cis* to Et), and δ = 2.34 for **22** (Ph *trans* to Et). Thus, addition of PhMgBr to 11k or of EtMgBr to 11d may be rationalised by a Felkin-Anh model where the phenyl group is positioned perpendicularly to the carbonyl, in the same way as described for the 10348 G. GUANTI et al. above discussed reductions. Although we have not demonstrated the relative configuration of other tertiary alcohols 16, we think that the same model is most likely followed. It is noteworthy that with the procedure herein described, all four stereoisomers of the final tertiary alcohol can be obtained in high stereomeric excess by: a) using either 1 or *ent-1*; b) reverting the order of introduction of R² and R³ in the route from hydroxamate 9 to the alcohols 16-17. Two exceptions are represented by the ethyl-vinyl and the ethyl-propargyl pairs. In the former case attempts to achieve 1,2-addition of an ethyl-metal compound to vinyl ketone 11e failed. Surprisingly, EtMgBr furnished neither the 1,2- nor the 1,4-addition products, but a mixture of saturated ketone 11k (16%) and of the adduct of nucleophilic addition to it (75%). On the other hand, addition of propargyl-MgBr to Weinreb's hydroxamate 9 afforded only the allenyl adduct.²³ In conclusion the collected results show how, starting from 2-phenyl-1,3-propanediols, a combination of a chemoenzymatic reaction and either hydride-reduction or organometal addition, allows to prepare in good to excellent stereoselectivity secondary and tertiary alcohols like 12 and 16 which represent useful intermediates for further synthetic applications. Through the latter strategy, that is by the stereoselective addition of an enolate to a ketone similar to 11k, we have recently performed a chemoenzymatic synthesis of the AB ring system of aklavinone. ^{2f} Finally, we wish to thank M.U.R.S.T. for financial assistance. #### **EXPERIMENTAL** All n.m.r. were taken in CDCl₃ (if not otherwise specified) at 200 MHz (H) or 50 MHz. (C). Chemical shifts were measured in ppm (δ scale). Coupling constants are reported in Hertz, Attribution of 13 C signals was made also with the aid of DEPT experiments. I.r. spectra were recorded in CHCl3 solution on a Perkin Elmer 881 spectrophotometer. For GC-MS analyses we used a HP-5890 series II instrument, equipped with a HP-1 series 530 μ column (1 10 m, i.d. 0.2 mm). Conditions: initial temp. = 140°C; initial time = 2 min; rate = 20°C/min; final temp. = 290°C; constant flow (He) = 0.9 ml/min. Retention times (R_t) are reported in minutes). In MS spectra (E.I., 180°C) relative abundances (ions with rel. ab. < 5% are not usually listed) are reported in brackets. HPLC analyses were performed on a HP-1090 liquid chromatograph, using a Hypersil column, PE/Et₂O mixtures as eluant and an U.V. detector; analyses were not normalized. All reactions employing dry solvents were carried out under a nitrogen atmosphere (if not otherwise specified). Tlc analyses were carried out on silica gel plates, which were developed by spraying a solution of (NH₄)₄MoO₄·4H₂O (21g) and Ce(SO₄)₂·4H₂O (1g) in H₂SO₄ (31 cc) and H₂O (469 cc) and warming and by U.V. detector. R_F were measured after an elution of 7-9 cm. Chromatographies were carried out on 70-230 mesh silica gel using the "flash" methodology.²⁴ Petroleum ether (40-60°C) is abbreviated as PE. In extractive work-up aqueous solutions were always reextracted twice with the appropriate organic solvent. Organic extracts, if not otherwise indicated, were finally washed with brine, dried over Na₂SO₄ and filtered, before evaporation of the solvent under reduced pressure. - (S)-3-Acetoxy-2-phenylpropan-1-ol 1. This compound was prepared according to ref. 25, starting from commercially available dietyl phenylmalonate (see also ref. 5). - (S)-3-(Benzyloxy)-2-phenylpropan-1-ol 2. a) (S)-3-Acetoxy-2-phenyl-2-[(tetrahydropyran-2-yl)oxy]propane. A solution of 1 (3.10 g, 15.94 mmol) in dry CH₂Cl₂ (30 ml) was treated at 0°C with 3,4-dihydro-2*H*-pyran (4.37 ml, 47.88 mmol) and *p*-toluenesulfonic acid (1.60 ml of a 0.1 M sol in THF) and stirred at the same temperature for 1 h. Saturated NaHCO₃ solution was added and the mixture was extracted with CH₂Cl₂, to give after solvent removal a pale yellow oil, used as such in the next reaction. R_f 0.56 (PE: Et₂O 1:1). b) (R)-2-phenyl-3-[(tetrahydropyran-2-yl)oxy]propan-1-ol. It was prepared following the general procedure for hydrolysis of acetyl group reported below in 95% yield from 1. Rf 0.21 (PE: Et₂O 1:1). I.r.: v_{max} 3515, 2944, 2871, 1602, 1452, 1123, 1074, 1029. GC-MS: R_t 5.45; m/z 206 (M+· - 30, 1.8), 117 (5), 105 (10), 104 (63), 103 (8), 101 (19), 91 (30), 85 (100), 77 (6), 67 (10), 57 (10), 43 (13), 41 (10). ¹H-n.m.r.: δ 1.43-1.92 [6H, m, -CH₂- of THP]; 2.58 [1H, centre of m, -OH]; 3.11-3.25 [1H, m, >CHPh]; 3.43-4.14 [6H, m, $-CH_2OTHP + -CH_2O$ - of THP + $-CH_2OH$]; 4.62 [1H, centre of m, -O-CHO- of THP]; 7.21-7.37 [5H, m, aromatics]. c) (R)-3-Benzyloxy-2-phenyl-2-[(tetrahydropyran-2-yl)oxy]propane. The above prepared alcohol (3.57 g, 15.11 mmol) was
dissolved in dry DMF (50 ml) and cooled to 0°C; it was treated with benzyl bromide (2.75 ml, 22.66 mmol), followed by NaH (1.09 g, 22.66 mmol, 50% suspension in mineral oil). After 1 h at 0°C the thick solution was stirred at r. t. for additional 2 hrs. The mixture was diluted with NH₄H₂PO₄ (5% in H2O) and extracted with Et2O. Combined organic extracts were washed with water and brine and finally concentrated in vacuo. Chromatography (PE: Et₂O 9:1 → Et₂O) gave the desired product as a colourless oil (4.60 g, 93%, 97% on unrecovered starting material) together with some unreacted starting material (127 mg, 4%). Rf 0.47 (PE: Et₂O 8:2). I.r.: v_{max} 3679, 3003, 2326, 1600, 1514, 1264, 1027. GC-MS: R_t 8.04; m/z 219 (M⁺⁺ - 107, 0.1), 191 (5), 118 (7), 105 (6), 104 (33), 101 (7), 92 (5), 91 (57), 86 (6), 85 (100), 84 (18), 67 (7), 57 (6), 43 (6), 41 (6), 1 H-n.m.r.: δ 1.42-1.82 [6H, m, -CH₂- of THP]; 3.21 [1H, quintuplet, >CHPh, J=6.2]; 3.38-4.06 [6H, m, -CH₂OTHP + -CH₂O- of THP + -CH₂OBn]; 4.50-4.59 [3H, m, -O-CHO- of THP + -C H_2 Ph]; 7.20-7.37 [10H, m, aromatics]. **d**) **2**. The monobenzylether above prepared was dissolved in dry MeOH (100 ml), cooled to 0°C and treated with p-toluenesulfonic acid (134 mg, 704.4 umol). After 1 h the solution was allowed to react at r. t. for 4 hrs. The mixture was neutralized by addition of saturated aqueous NaHCO3 and concentrated in vacuo. The residue was diluted with water and extracted with Et₂O. After solvent removal, chromatography (PE: Et₂O 7:3 \rightarrow Et₂O) gave the pure product as a colourless oil (3.36 g, 98%). R_f 0.34 (PE : Et₂O 1:1). [α]_D = - 26.7° (c 2.72 CHCl₃). Anal. found C, 79.55; H, 7.45. $C_{16}H_{18}O_2$ requires C, 79.31; H, 7.49. I.r.: v_{max} 3606, 3000, 2932, 1602, 1451, 1315, 1275, 1026. GC-MS: R_t 6.20; m/z 242 (M+, 1.2), 194 (6), 121 (38), 120 (10), 107 (6), 105 (12), 104 (100), 103 (31), 92 (17), 91 (89), 79 (8), 77 (10), 65 (12). ¹H-n.m.r.: 8 2.44 [1H, dd, -OH, J=7.3, 5.0]; 3.22 [1H, centre of m, >CHPh]; 3.73-4.08 [4H, m, $-CH_2OH + -CH_2OBn$]; 4.56 [2H, s, $-CH_2Ph$]; 7.19-7.40 [10H, m, aromatics]. General procedure for hydrolysis of acetyl group. Crude O-acetyl, O-protected, 1,3-(2-phenyl)propanediol (10 mmol) was dissolved in dry MeOH (60 ml), cooled to 0°C and treated with KOH (16 ml of 1 N sol in MeOH). After stirring 1 h (or more) at 0°C the mixture was neutralized by addition of NH₄H₂PO₄ (5% solution in water) and concentrated *in vacuo*. The residue was diluted with water and extracted with Et₂O. After solvent removal. chromatography (PE: Et₂O 7:3 \rightarrow Et₂O) gave pure product as a colourless oil. (*R*)-3-[(Benzyloxy)methoxy]-2-phenylpropan-1-ol 3. **a**) (*S*)-3-Acetoxy-2-[(benzyloxy)methoxy]-2-phenylpropane. A solution of 1 (4.42 g, 22.75 mmol) in dry CH₂Cl₂ (65 ml) was treated, at 0°C, with disopropylethylamine (Hünig's base) (5.55 ml, 31.86 mmol) and benzyl chloromethyl ether (3.80 ml, 27.31 mmol). After 18 hrs stirring at r. t., an additional portion of both reagents was added (3.96 ml, 22.73 mmol of Hünig's base & 3.16 ml. 22.73 mmol of BOM-Cl) and the mixture was stirred again for 3 hrs. The solution was diluted with brine and extracted with Et₂O. After solvent removal the brownish oil was used as such in the next reaction. R_f 0.59 (PE : Et₂O 1:1). **b**) 3 Was prepared following the general procedure for removal of acetyl group (see above) in 95% yield from 1. R_f 0.26 (PE : Et₂O 1:1). [α]_D = + 18.3° (c 3.22, CHCl₃). Anal. found C, 74.75; H, 7.35. C₁₇H₂₀O₃ requires C, 74.97; H, 7.40. Lr.: ν_{max} 3678, 3003, 1601, 1264. GC-MS: R_f 7.05; m/z 212 (M+·· - 60, 9), 137 (7), 121 (36), 120 (13), 118 (6), 108 (7), 107 (10), 106 (9), 105 (15), 104 (96), 103 (19), 92 (18), 91 (100), 79 (6), 77 (8), 65 (7). ¹H-n.m.r.: δ 2.06 [1H, broad t, -OH, J=6.1]; 3.16 [1H, quintuplet, >CHPh, J=6.5]; 3.81-4.04 [4H, m, -CH₂OH + -CH₂OBOM]; 4.55 [2H, s, -OCH₂Ph]; 4.78 [2H, s, $-OCH_2O_{-}$; 7.23-7.35 [10H, m, aromatics]. (*R*)-3-[(*t*-Butyldiphenylsilyl)oxy]-2-phenylpropan-1-ol 4. a) (*R*)-3-Acetoxy-2-[(*t*-butyldiphenylsilyl)oxy]-2-phenylpropane. A solution of 1 (3.06 g, 15.76 mmol) in dry DMF (20 ml) was treated with *t*-BuPh₂SiCl (6.96 ml, 26.80 mmol) and imidazole (2.15 g, 31.52 mmol) and stirred for 2 hrs at r. t.. The solution was diluted with water and extracted with Et₂O. Combined organic extracts were washed with water and brine and finally concentrated *in vacuo* to give a pale yellow oil used as such in the next reaction. R_f 0.59 (PE: Et₂O 1:1). b) 4 Was prepared following the general procedure for removal of acetyl group (see above) in 96% yield from 1. R_f 0.28 (PE: Et₂O 65:35). [α]_D = +8.4° (c 2.04, CHCl₃). Anal. found C, 76.65; H, 7.80. C₂₅H₃₀O₂Si requires C, 76.88; H, 7.74. I.r.: ν_{max} 3690, 3010, 1601, 1262, 1190, 1112. GC-MS: R_f 9.20; m/z 333 (M⁺⁺⁻⁵7, 1.0), 201 (5), 200 (18), 199 (100), 181 (6), 139 (32), 117 (21), 91 (9). ¹H-n.m.r. δ 1.05 [9H, s, -C(CH₃)₃]; 2.35 [1H, dd, -OH, J=6.7, 5.4]; 3.12 [1H, centre of m, >CH Ph]; 3.85-4.18 [4H, m, -CH₂OH + -CH₂OTBDPS]; 7.11-7.68 [15H, m, aromatics]. General procedure for Jones oxidation of alcohols 2-4. A solution of alcohol (10 mmol) in dry acetone (60 ml) was cooled to 0°C and treated dropwise with Jones reagent (prepared from 10 g CrO₃, 8.6 ml of 96% H₂SO₄, 14 ml of H₂O, and brought up to 40 ml)²⁶ until complete reaction [about 40 drops (from a Pasteur pipette)/mmol of substrate usually needed]. After 30 min-1.5 hrs the reaction was quenched with 5% NH₄H₂PO₄. After saturation with NaCl, the aqueous phase was extracted with AcOEt. The organic extracts were washed with saturated brine containing 10% Na₂SO₃ solution and solvent removed *in vacuo*. Crude acid (usually a white solid) was used as such in the next reaction. General procedure for methyl N-methylhydroxamate formation. Crude acid (from 10 mmol of alcohol) was dissolved in THF (200 ml) and treated with a solution of N,O-dimethylhydroxylamine (1.95 g, 20 mmol) in H_2O (50 ml). The pH of the solution was adjusted to 4.5 by addition of 1 M NaOH. A solution of WSC (3.83 g, 20 mmol) in H_2O (75 ml) was added dropwise over a period of about 20 min and the resulting colourless solution was stirred at r. t. for 20-24 hrs. After saturation with NaCl, the aqueous phase was extracted with Et_2O and solvent was removed. Chromatography (PE: Et_2O 8:2 \rightarrow 4:6) furnished the corresponding hydroxamates. - (*R*)-Methyl 3-(benzyloxy)-N-methyl-2-phenylpropanohydroxamate 8. Y: 68% from 2 [colourless oil about 90% pure (purity was considered in calculating yield)], used as such for further reaction. R_f 0.30 (PE: Et₂O 1:1). $[\alpha]_D = +65.9^\circ$ (c 1.50, CHCl₃). I.r.: v_{max} 3838, 2997, 2938, 2864, 1714, 1650, 1452, 1386, 1097, 1077. GC-MS: R_f 7.27; m/z 299 (M++, 0.02), 208 (6), 193 (4.6), 105 (2.6), 104 (6), 92 (8), 91 (100), 65 (5), 61 (3.0). 1 H-n.m.r.: δ 3.19 [3H. s, -NC H_3]; 3.52 [3H, s, -OC H_3]; 3.62 [1H, dd, >CHPh, J=8.9, 5.2]; 4.13 [1H, t, -CHHOBn, J=9.1]; 4.34-4.44 [1H, m, -CHHOBn]; 4.49 & 4.61 [2H, AB system, -OC H_2 Ph, J=12.2] 7.21-7.40 [10H, m, aromatics]. - (S)-Methyl 2-[(benzyloxy)methoxy)]-N-methyl-2-phenylpropanohydroxamate 9. Y: 65% from 2 (colourless oil). R_f 0.56 (PE : Et₂O 2:8). $|\alpha|_D = -63.6^{\circ}$ (c 0.85 CHCl₃). I.r.: ν_{max} 3853, 2998, 2937, 2887, 1652, 1603, 1453, 1384, 1110, 1045. GC-MS: 9 is not suitable for this analysis. 1 H-n.m.r.: δ .3.19 [3H, s, -NC H_3]; 3.52 [3H, s, -OC H_3]; 3.76 [1H, dd, >CHPh, J=9.1, 5.0]; 4.24 [1H, t, -CHHOBOM, J=9.3]; 4.30-4.42 [1H. m. -CHHOBOM]; 4.51 & 4.55 [2H, AB system, -OC H_2 O-, J=6.7]; 7.22-7.39 [10H, m, aromatics]. - (S)-Methyl 2-[(*t*-butyldiphenylsilyl)oxy)]-N-methyl-2-phenylpropanohydroxamate 10. Y: 55% from 2 (white solid). R_f 0.42 (PE : Et₂O 6:4). [α]_D = 22.2° (c 2.045 CHCl₃). I.r.: ν _{max} 3808, 3009, 1600, 1419, 1245, 1191. GC-MS: 10 is not suitable for this analysis. ¹H-n.m.r.: δ 1.00 [9H, s, -C(CH_3)₃]; 3.19 [3H, s, -NC H_3]; 3.53 [3H. s, -OC H_3]: 3.80 [1H, centre of m, >CHPh]; 4.28-4.38 [2H, m, -C H_2 OTBDPS]; 6.80-7.78 [15H, m, aromatics]. General procedure for ketone formation. Compounds 8-10 were dissolved in dry THF (6-12 ml/mmol of substrate) and cooled to -78°C; organometal was added and reaction was stirred until complete at the indicated temperature. Quenching with NH₄Cl (sat. solution), followed by extraction with Et₂O gave, after solvent removal, crude ketone, which was purified by chromatography (PE: Et₂O 100: $0 \rightarrow 9$:1, for TBDPS protected ketones; PE: Et₂O 95:5 \rightarrow 7:3, for BOM or Bn protected ketones). Except than 11k, which is a white solid, all other ketones were colourless oils. - (*R*)-1-Benzyloxy-2-phenylhex-5-en-3-one 11a. Organometal: 2 equivalents of allyl-MgBr (1 M in Et₂O). T = -78° → -65°C. Y: 89%. R_f 0.65 (PE : Et₂O 8:2). [α]_D = +169.5° (c 2.49, CHCl₃). Anal. found C, 81.15; H, 7.22. C₁₉H₂₀O₂ requires C, 81.40; H, 7.19. I.r.: v_{max} 3357, 3021. 1711, 1629, 1584, 1451, 1360, 1099, 1074, 1026. GC-MS: 11a is not suitable for this analysis. ¹H-n.m.r.: δ 3.20 [2H, dt, -COCH₂CH=CH₂, J=6.8, 1.3]; 3.61 [1H. X part of ABX system, >CHPh]; 4.08 & 4.12 [2H. AB part of ABX system, -CH₂OBn, J_{AB}=8.7, J_{AX} & J_{BX} not determinable]; 4.47 & 4.54 [2H. AB system, -OCH₂Ph, J=12.1]; 5.04 [1H, dq, -COCH₂CH=CHH cis to -COCH₂-, J=17.1, 1.5]; 5.14 [1H, dq, -COCH₂CH=CHH trans to -COCH₂-, J=10.3, 1.4]; 5.86 [1H, ddt, -COCH₂CH=CH₂, J=17.1, 10.3, 6.9]; 7.20-7.28 [10H, m, aromatics]. - (*S*)-1-[(Benzyloxy)methoxy]-2-phenylhex-5-en-3-one 11b. Organometal: 2 equivalents of allyl-MgBr (1 M in Et₂O). T = -78°C. Y: 86%. R_f 0.38 (PE : Et₂O 8:2). [α]_D = -169.3° (c 2.61, CHCl₃). Anal. found C, 77.20; H, 7.16. C₂₀H₂₂O₃ requires C, 77.39; H, 7.14. Lr.: v_{max} 3838, 3001, 2929, 2886, 1713, 1630, 1600, 1452, 1379, 1265, 1163, 1053,
1024. GC-MS: **11b** is not suitable for this analysis. ¹H-n.m.r.: δ 3.19 [2H, dt, -COCH₂CH=CH₂, J=6.8, 1.3]; 3.73 [1H, dd, >CHPh, J=9.3, 5.3]; 4.05 [1H, dd, -CHHOBOM, J=8.7, 5.3]; 4.24 [1H, t, -CHHOBOM, J=9.0]; 4.47 & 4.53 [2H. AB system. -OCH₂Ph, J=11.8]; 4.70 & 4.74 [2H, AB system. -OCH₂O- J=6.8]; 5.04 [1H, dq, -COCH₂CH=CHH cis to -COCH₂-, J=17.1, 1.5]; 5.14 [1H, dq, -COCH₂CH=CHH trans to -COCH₂-, J=10.2, 1.4]; 5.86 [1H, ddt, -COCH₂CH=CH₂, J=17.1, 10.2, 6.9]; 7.21-7.39 [10H, m, aromatics]. - (*S*)-1-[(**Benzyloxy**)**methoxy**]-2-**phenylheptan-3-one** 11c. Organometal: 2 equivalents of *n*-BuLi (1.6 M in hexanes). T = -78°C. Y: 87%. R_f 0.44 (PE : Et₂O 8:2). [α]_D = -149.4° (c 2.05, CHCl₃). Anal. found C, 77.10; H, 8.10. C₂₁H₂₆O₃ requires C, 77.27; H, 8.03. I.r.: ν_{max} 2961, 2875, 1710, 1453, 1380, 1193, 1115, 1054. GC-MS: R_t 7.98; m/z 326 (M++, 0.02), 191 (1.3), 181 (1.2), 120 (1.8), 119 (1.8), 108 (1.1), 104 (100), 103 (10), 92 (5), 91 (45), 85 (13), 77 (3.9), 65 (4.4), 57 (14), 41 (7), ¹H-n.m.r.: δ 0.81 [3H, t, CH_3 (CH₂)₃-, J=7.2]; 1.30-1.04 [2H, m, CH₃CH₂CH₂-]; 1.42-1.58 [2H, m, CH₃CH₂CH₂-]; 2.42 [2H, t, CH₃CH₂CH₂CH₂-, J=7.3]; 3.72 [1H, dd, >CH Ph, J=9.4, 5.4]; 3.99 [1H, dd, -CH HOBOM, J =8.7, 5.4]; 4.24 [1H, t, -CH HOBOM, J=9.1]; 4.47 & 4.52 [2H, AB system, -OCH₂Ph, J=11.7]; 4.69 & 4.74 [2H, AB system, -OCH₂O-, J=6.7]; 7.21-7.38 [10H, m, aromatics]. - (S)-3-[(Benzyloxy)methoxy]-1,2-diphenylpropan-1-one 11e. Organometal: 4 equivalents of PhMgBr (3 M in Et₂O). T = -78°C \rightarrow r. t.. A considerable amount of PhOH was formed during this reaction; its formation can be minimized working under a helium or argon atmosphere instead of nitrogen. Phenol was best eliminated during work-up by rapid treatment of combined organic extracts with 1N NaOH. Y: 93%. R_f 0.58 - (PE : Et₂O 8:2). $[\alpha]_D = -138.3^\circ$ (c 1.50, CHCl₃). Anal. found C, 79.85; H, 6.30. $C_{23}H_{22}O_3$ requires C, 79.74; H, 6.40. l.r.: v_{max} 3596, 3003, 2947, 2886, 1679, 1597, 1448, 1192, 1165, 1114, 1045. GC-MS: R_t 9.89; m/z 326 (M+-30, 0.9), 240 (2.6), 239 (5) 211 (2.4), 209 (6), 208 (14), 167 (2.4), 165 (9), 120 (3.3), 106 (8), 105 (96), 104 (100), 103 (6), 91 (42), 77 (25), 51 (5). 1H -n.m.r.: δ 3.85 [1H, dd, >CHPh, J=9.6, 5.4]; 4.41 [1H, t, -CHHOTBDPS, J=9.2]; 4.45 & 4.52 [2H, AB system, -OC H_2 Ph, J=11.8]; 4.72 & 4.77 [2H, AB system, -OC H_2 O-, J=6.8]; 4.90 [1H, dd, -CHHOTBDPS, J=8.9, 5.4]; 7.19-7.99 [15H, m, aromatics]. - (*S*)-3-[(*t*-Butyldiphenylsilyl)oxy]-1,2-diphenylpropan-1-one 11f. Organometal: 4 equivalents of PhMgBr (3 M in Et₂O). T = -78°C \rightarrow r. t.. Y: 74% (93% on unrecovered 10; for work-up see also preparation of 11e). R_f 0.72 (PE : Et₂O 9:1). [α]_D = -61.0° (c 2.32, CHCl₃). Anal. found C, 84.30; H, 6.85. C₃₁H₃₂O₂Si requires C, 84.13; H, 6.94. I.r.: ν_{max} 3581, 2998, 2909, 2862. 1640, 1451, 1364, 1191, 1080, 1026. GC-MS: R_t 11.38; m/z 409 (10), 408 (35), 407 (M⁺⁻ 57, 100), 377 (8), 330 (6), 329 (20), 301 (10), 300 (20), 299 (75), 251 (6), 224 (7), 223 (20), 200 (8), 199 (46), 197 (16), 181 (11), 178 (11) 168 (10), 167 (68), 135 (18), 105 (41), 104 (24), 103 (7), 91 (6), 78 (10), 77 (40), 51 (7), 45 (7). ¹H-n.m.r.: δ 0.95 [9H, s, -C(CH₃)₃]; 3.91 [1H, dd, >CHPh, J=9.8, 6.2]; 4.45 [1H, dd, -CHHOTBDPS, J=9.8, 8.0]; 4.81 [1H, dd, -CHHOTBDPS, J=8.0, 6.2]; 7.18-7.95 [20H, m, aromatics]. - (S)-5-[(Benzyloxy)methoxy]-4-phenylpent-1-en-3-one 11g. Organometal: 4 equivalents of vinyl-MgBr (1 M in THF). T = -78°C \rightarrow r. t.. Y: 93%. R_f 0.66 (PE : Et₂O 6:4). [α]_D = 198.2° (c 1.85, CHCl₃). Anal. found C, 77.25; H, 6.85. C₁₉H₂₀O₃ requires C, 77.00; H, 6.80. I.r.: ν_{max} 3020, 2943, 2885, 1711, 1452, 1380, 1267, 1163, 1111, 1055, 1024. GC-MS: 11g is not suitable for this analysis. ¹H-n.m.r.: δ 3.79 [1H, X part of ABX system, >CHPh, J_{AX} & J_{BX} not determinable]; 4.25 & 4.29 [2H, AB part of ABX system, -CH₂OBOM, J_{AB}=8.5, J_{AX} & J_{BX} not determinable]; 4.48 & 4.52 [2H, AB system, -OCH₂Ph, J=11.7]; 4.71 & 4.76 [2H, AB system, -OCH₂O-, J=6.7]; 5.74 [1H, X part of ABX system, -COCH=CHH trans to >CO, J_{AX} & J_{BX}=8.7, 2.9]; 6.30 & 6.36 [2H, AB part of ABX system, COCH=CHH cis to >CO & COCH=CH₂, J_{AB}=17.3, J_{AX} & J_{BX} not determinable]; 7.21-7.38 [10H, m, aromatics]. - (*S*)-5-[(*t*-Butyldiphenylsilyl)oxy]-4-phenylpent-1-en-3-one 11h. Organometal: 4 equivalents of vinyl-MgBr (1 M in THF). T = -78°C \rightarrow r. t.. Y: 88%. R_f 0.77 (PE : Et₂O 8:2). [α]_D = -110.1° (c 2.51, CHCl₃). Anal. found C. 78.45; H. 7.25. C₂₇H ₃₀O₂Si requires C, 78.22; H. 7.30. I.r.: v_{max} 3052, 2958, 2931, 2857, 1678, 1612, 1453, 1400, 1192, 1106. GC-MS: R_f 9.29; m/z 359 (8), 358 (31), 357 (M+- 57, 100), 327 (16), 280 (10), 279 (41), 261 (6), 251 (8), 250 (21), 249 (91), 224 (9), 223 (26), 201 (15), 200 (18), 199 (93), 197 (20), 183 (8), 181 (18), 180 (6), 141 (7), 139 (7), 135 (27), 129 (8), 128 (8), 123 (6), 121 (8), 118 (6), 117 (67), 115 (6), 105 (20), 104 (34), 103 (18), 91 (14), 78 (14), 77 (26), 57 (9), 55 (34), 51 (6), 45 (13), 41 (9). ¹H-n.m.r.: δ 0.97 [9H, s, -C(CH₃)₃]; 3.84 [1H, X part of ABX system, >C*H*Ph, J_{AX} & J_{BX}=5.7, 7.8]; 4.21 & 4.34 [2H, AB part of ABX system, -CH₂OTBDPS, J_{AB}=8.6, J_{AX} & J_{BX}=5.7, 7.8]; 5.74 [1H, X part of ABX system, -COCH=CHH trans to >CO. J=10.6, 1.1]; 6.25 & 6.36 [2H, AB part of ABX system, -COCH=CHH cis to >CO & COCH=CH₂, J_{AB}=17.5, J_{AX} & J_{BX}=1.1, 10.6]; 7.13-7.65 [15H, m, aromatics]. - (S)-1-[(Benzyloxy)methoxy]-2-phenyldec-4-yn-3-one 11i. Organometal: 4 equivalents of heptynyl-Li [0.83 M in THF; reagent was prepared by addition of an equimolar quantity of *n*-BuLi (1.6 M in hexanes) to a solution of heptyne in THF]. T = -78° \rightarrow 40°C. Y: 80%. R_f 0.83 (PE : Et₂O 8:2). [α]_D = 33.5° (c 3.07, CHCl₃). Anal. found C, 79.30; H, 7.72. $C_{24}H_{28}O_{3}$ requires C, 79.09; H, 7.74. I.r.: v_{max} 3009, 2972, 2394, 1600. 1419, 1245, 1191. GC-MS: 11i is not suitable for this analysis. ¹H-n.m.r.: δ 0.87 [3H, t, CH₃(CH₂)₄-, J=6.9]; 1.22-1.52 [6H, m, CH₃(CH₂)₃CH₂-]; 2.27 [2H, t, -CH₂C=C-, J=7.0]; 3.84 [1H, dd, >CHPh, J=9.5, 5.4]; 4.08 [1H, dd, -CHHOBOM, J=8.7, 5.4]; 4.34 [1H, t, -CHHOBOM, J=9.1]; 4.51 & 4.56 [2H, AB system, -OCH₂Ph, J=11.8]; 4.74 & 4.77 [2H, AB system, -OCH₂O-, J=6.8]; 7.24-7.38 [10H, m, aromatics]. - (S)-1-[(t-Butyldiphenylsilyl)oxy]-2-phenyldec-4-yn-3-one 11j. Organometal: 4 equivalents of heptynyl-Li (0.83 M in THF, obtained as described in preparation of 11i). $T = -78^{\circ} \rightarrow -40^{\circ}\text{C}$. Y: 79%. R_f 0.53 (PE : Et₂O 95:5). [α]_D = -9.7° (c 2.94, CHCl₃). Anal. found C, 79.40; H, 8.10. C₃₂H₃₈O₂Si requires C, 79.62; H, 7.94. I.r.: v_{max} 3006, 2956, 2930, 2859, 2207, 1665, 1454, 1185, 1106, GC-MS: R_t 11.55; m/z 426 (17), 425 (M+-57, 48), 348 (6), 347 (19), 277 (12), 261 (6), 247 (6), 223 (6), 201 (5), 200 (18), 199 (100), 197 (15), 184 (6), 183 (13), 181 (11), 155 (5), 141 (6), 139 (6), 135 (21), 129 (6), 123 (10), 121 (6), 105 (11), 104 (20), 103 (15), 91 (10), 78 (9), 77 (21), 67 (8), 55 (9), 45 (9), 41 (10). 1 H-n.m.r.: δ 0.87 [3H, t, $CH_3(CH_2)_4$ -, J=7.1]; 1.00 [9H, s, $-C(CH_3)_3$]; 1.21-1.53 [6H, m, $CH_3(CH_2)_3CH_2$ -]; 2.29 [2H, t, $-CH_2C\equiv C$ -, J=7.0]; 3.88 [1H, dd, >CHPh, J=9.6, 5.8]; 4.03 [1H, dd, -CHHOTBDPS, J=7.3, 5.7]; 4.38 [1H, dd, -CHHOTBDPS, J=9.6, 8.1]; 7.17-7.66 [15H, m, aromatics]. (S)-1-[(Benzyloxy)methoxy]-2-phenylpentan-3-one 11k. Organometal: 2 equivalents of EtMgBr (3 M in THF). T = -78° \rightarrow 0°C. Y: 81% (93 on unrecovered 9). R_f 0.54 (PE : Et₂O 7:3). [α]_D = - 178.9° (c 1.03, CHCl₃). Anal. found C, 76.20; H, 7.46. C₁₉H₂₂O₃ requires C, 76.48; H, 7.43. I.r.: v_{max} 2998, 2980, 2939, 2881, 1712, 1453, 1380, 1193, 1162, 1113, 1026, 969. GC-MS: R_f 7.27; ml_z 298 (M+, 0.02), 191 (1.6), 181 (6), 161 (1.4), 160 (1.5), 120 (2.2), 119 (2.2), 105 (10), 104 (100), 103 (8), 92 (7), 91 (67), 77 (6), 65 (6), 57 (27). 1 H-n.m.r.: δ 0.99 [3H, t, CH₃CH₂-, J=7.2]; 2.46 [2H, centre of m, CH₃CH₂-]; 3.73 [1H, dd, >CHPh, J=9.3, 5.3]; 3.99 [1H, dd, -CHHOBOM, J=8.8, 5.3]; 4.25 [1H, t, -CHHOBOM, J=9.1]; 4.48 & 4.53 [2H, AB system, -OCH₂Ph, J=11.7]; 4.70 & 4.74 [2H, AB system, -OCH₂O-, J=6.7]; 7.21-7.38 [10H, m, aromatics]. General procedure for the reduction of ketones with L-SelectrideTM. Ketone (200-300 μ mol) was dissolved in dry THF (5-7.5 ml) and cooled to -78°C. L-SelectrideTM (1 M in THF, 3 equivalents) was added and the resulting solution was stirred at the same temperature for about 30 min, then quenched with NH₄Cl and extracted with Et₂O. Crude mixture was dissolved in THF (10 ml) and treated with 3 equivalents (based on L-SelectrideTM) of 0.25 N NaOH and 3 equivalents of 35% H₂O₂. The resulting solution was stirred at r.t. for 2.5 h, neutralized with 5% aqueous NH₄H₂PO₄ and extracted with Et₂O. A sample of crude reaction mixture was utilized for d. r. determination by HPLC. Alcohols 12 were isolated by chromatography (PE: Et₂O 9:1 \rightarrow 8:2, for TBDPS O-protected ketones; PE: Et₂O 8:2 \rightarrow 6:4, for BOM or Bn O-protected ketones). Yields and [α]_D values for compounds 12 are reported in Table 1. The isolated alcohols were always colourless oils. - (2*R*, 3*R*)-1-Benzyloxy-2-phenylhex-5-en-3-ol 12a. R_f 0.67 (PE : Et₂O 1:1). I.r.: v_{max} 3581, 3484, 2998, 2909, 2862, 1640, 1602, 1451,1364, 1191, 1080, 1026. GC-MS: R_t 6.97; m/z 264 (M⁺⁺ 18, 0.01), 144 (1.3), 130 (1.0), 129 (2.7), 121 (1.5), 117 (1.1), 107 (6), 106 (5), 105 (11), 104 (100), 103 (5), 92 (7), 91 (74), 65 (8), 41 (6). ¹H-n.m.r.: δ 1.96-2.29 [2H. m. -CH₂CH=CH₂]; 2.01 [1H. d. -OH, J=4.9]; 3.01 [1H. centre of m. >CHPh]: 3.76 & 3.93 [2H. AB part of ABX system. -CH₂OBn, J_{AB}=9.2, J_{AX} & J_{BX}=5.4, 7.5]; 4.13 [1H. centre of m. >CHOH]; 4.52 & 4.56 [2H. AB system.
-OCH₂Ph. J=11.8]; 5.00-5.10 [2H. m. -CH=CH₂.]; 5.84 [1H. ddt, -CH=CH₂.] J=17.1, 10.6, 7.1]; 7.25-7.35 [10H. m. aromatics]. - (2S, 3S)-1-[(Benzyloxy)methoxy]-2-phenylhex-5-en-3-ol 12b. R_f 0.59 (PE : Et₂O 8:2). I.r.: v_{max} 3674. 3580, 3002, 2976, 1639, 1602, 1452, 1379, 1163, 1110, 1039. GC-MS: R_f 7.76; m/z 241 (M+· 71, 0.2), 205 (0.6). 163 (1.4), 137 (11), 133 (2.0), 129 (2.1), 121 (3.2), 120 (1.7), 107 (4.0), 106 (3.4), 105 (12), 104 (100), 103 (5), 92 (8), 91 (68), 65 (5). 1 H-n.m.r.: δ 1.84 [1H, d, -OH, J=4.9]; 2.14 [2H, centre of m, -CH₂CH=CH₂]; 2.98 [1H, centre of m, >CHPh]: 3.91 & 4.04 [2H, AB part of ABX system, -CH₂OBOM, J_{AB} = 9.6, J_{AX} & J_{BX} =6.2, 7.4]; 4.03-4.15 [1H, m, >CHOH]; 4.52 [2H, s, -OCH₂Ph]; 4.77 [2H, s, -OCH₂O-]; 5.02-5.12 [2H, m, -CH=CH₂]; 5.84 [1H, ddt, -CH=CH₂, J=17.0, 10.6, 6.8]; 7.28-7.38 [10H, m, aromatics]. - (2S, 3S)-1-[(Benzyloxy)methoxy]-2-phenylheptan-3-ol 12c. R_f 0.44 (PE : Et₂O 65:35). I.r.: v_{max} 3670, 3583, 2997, 2936, 2873, 1602, 1453, 1380, 1189, 1164, 1110, 1046. GC-MS: R_f 8.19; m/z 241 (M⁺⁺⁻⁻ 87, 0.02). 193 (0.5), 177 (0.3), 160 (0.5), 138 (0.7), 137 (7), 105 (11), 104 (100), 92 (5), 91 (38), 41 (6). ¹H-n.m.r.: δ 0.87 [3H, t, $CH_3(CH_2)_3$ -, J=6.8]; 1.20-1.53 [6H, m, $CH_3(CH_2)_3$ -]; 1.69 [1H, d, -OH, J=5.9]; 2.96 [1H, centre of m. >CHPh]: 3.91 & 4.03 [2H, AB part of ABX system. -CH₂OBOM. Lab=9.6 Lay & - J=6.9]; 7.25-7.38 [10H, m, aromatics]. - (2S, 3S)-1-[(*t*-Butyldiphenylsilyl)oxy]-2-phenylheptan-3-ol 12d. R_f 0.26 (PE : Et₂O 9:1). I.r.: v_{max} 3681, 3580, 2957, 2930, 2857, 1601, 1589, 1463, 1391, 1111, 1079. GC-MS: R_f 9.93; m/z 389 (M+· 57), 229 (6), 201 (5), 200 (18), 199 (100), 197 (6), 181 (6), 173 (22), 147 (6), 139 (11), 135 (9), 131 (7), 117 (18), 105 (11), 104 (16), 91 (32), 77 (6), 69 (7), 41 (8). ¹H-n.m.r.: δ 0.87 [3H, t, $CH_3(CH_2)_3$ -, J=6.9]; 1.03 [9H, s, -C(CH_3)₃]; 1.22-1.48 [6H, m, $CH_3(CH_2)_3$ -]; 1.95 [1H, d, -OH, J=5.3]; 2.84 [1H, centre of m, >CHPh]; 3.90 & 4.06 [2H, AB part of ABX system, -CH₂OTBDPS, J_{AB} =10.1, J_{AX} & J_{BX} =5.2, 7.5]; 4.06-4.19 [1H, m, >CHOH]; 7.20-7.64 [15H, m, aromatics]. - (1*R*, 2*S*)-3-[(Benzyloxy)methoxy]-1,2-diphenylpropan-1-ol 12e. R_f 0.45 (PE : Et₂O 6:4). I.r.: v_{max} 3601, 3002, 2930, 2876, 1602, 1492, 1452, 1379, 1192, 1112, 1042. GC-MS: R_f 9.25; m/z 227 (M+- 121, 0.03), 213 (0.7), 181 (0.4). 179 (0.3), 178 (0.4), 165 (0.4), 138 (0.8), 137 (8), 121 (1.4), 120 (0.6), 119 (0.3), 108 (0.8), 107 (6), 105 (12), 104 (100), 91 (25), 79 (7), 77 (7). ¹H-n.m.r.: δ 2.23 [1H, d, -OH, J=3.8]; 3.22 [1H, centre of m, >CHPh]: 3.76 & 3.79 [2H, AB part of ABX system, $-CH_2$ OTBDPS, J_{AB} =9.6, J_{AX} & J_{BX} =6.2, 6.3]; 4.40 [2H, s, $-OCH_2$ Ph]; 4.65 & 4.68 [2H, AB system, $-OCH_2$ O-, J=6.7]; 5.07 [1H, dd, >CHOH, J=6.6, 3.6]; 7.19-7.38 [15H, m, aromatics]. - (1*R*, 2*S*)-3-[(*t*-Butyldiphenylsilyl)oxy]-1,2-diphenylpropan-1-ol 12*f*. R_f 0.38 (PE : Et₂O 8:2). I.r.: v_{max} 3598. 3484. 2959. 2929, 2857, 2351, 1602, 1452, 1391, 1112, 1086, 1028. GC-MS: R_f 11.38; m/z 409 (M⁺:-57, 6), 305 (9), 230 (5), 229 (29), 211 (5), 201 (5), 200 (18), 199 (100), 197 (6), 193 (6), 167 (8), 135 (8), 105 (5), 104 (16), 91 (9), 77 (9). ¹H-n.m.r.: δ 1.03 [9H, s, -C(CH₃)₃]; 2.42 [1H, d, -OH, J=4.1]; 3.13 [1H, centre of m. >CHPh]; 3.75 & 3.82 [2H, AB part of ABX system, -CH₂OTBDPS, J_{AB} =10.1, J_{AX} & J_{BX} =4.9, 6.3]; 5.30 [1H, dd, >CHOH, J=6.4, 4.1]; 7.14-7.55 [20H, m, aromatics]. - (3S, 4S)-5-[(Benzyloxy)methoxy]-4-phenylpent-1-en-3-ol 12g. (This compound was actually isolated from reduction with DIBALH). R_f 0.37 (PE: Et₂O 6:4). ¹H-n.m.r.: δ 2.04 [1H, d, -OH, J=5.5]; 3.09 [1H, centre of m, >CHPh]: 3.89 & 4.02 [2H, AB part of ABX system, -CH₂OBOM, J_{AB}=9.6, J_{AX} & J_{BX}=6.2, 7.4]; 4.45-4.53 [1H, m, >CHOH]: 4.50 [2H, s, -OCH₂Ph]: 4.74 & 4.76 [2H, AB system, -OCH₂O-, J=6.9]; 5.16 [1H, dt, -CH=CHH cis to -CH=CH₂, J=10.3, 1.4]; 5.25 [1H, dt, -CH=CHH trans to -CH=CH₂, J=17.3, 1.5]; 5.85 [1H, ddd, -CH=CH₂, J=16.7, 10.3, 6.2]; 7.27-7.38 [10H, m, aromatics]. - (3*S*, 4*S*)-5-[(*t*-Butyldiphenylsilyl)oxy]-4-phenylpent-1-en-3-ol 12h. (This compound was actually isolated from reduction with DIBALH). R_f 0.25 (PE: Et₂O 8:2). ¹H-n.m.r.: δ 1.03 [9H, s, -C(CH_3)₃]; 2.39 [1H, d, -OH, J=5.3]; 3.03 [1H, centre of m, >CHPh]; 3.88 & 4.08 [2H, AB part of ABX system, -CH₂OTBDPS, J_{AB}=10.1, J_{AX} & J_{BX}=5.1, 7.8]; 4.64 [1H, centre of m, >CHOH]; 5.15 [1H, dt, -CH=CHH cis to -CH=CH₂, J=10.4, 1.4]; 5.28 [1H, dt, -CH=CHH trans to -CH=CH₂, J=17.1, 1.5]; 5.85 [1H, ddd, -CH=CH₂, J=17.1, 1.5]; 7.06-7.68 [15H, m, aromatics]. - (2*S*, 3*R*)-1-(Benzyloxy)methoxy-2-phenyldec-4-yn-3-ol 12i. R_f 0.50 (PE : Et₂O 6:4). I.r.: v_{max} 3687, 3007, 2954, 2925, 2398, 1601, 1452, 1378, 1187, 1037. ¹H-n.m.r.: δ 0.88 [3H, t, $CH_3(CH_2)_4$ -, J=7.0]; 1.21-1.52 [6H, m, $CH_3(CH_2)_3CH_2$ -]; 2.18 [2H, dt, $-CH_2C\equiv C$ -, J=6.9, 2.0]; 2.74 [1H, d, -OH, J=8.0]; 3.26 [1H, centre of m, >*CHPh*]; 3.94 [1H, dd, -*CHHOBOM*, J=9.5, 5.5]; 4.27 [1H, t, -*CHHOBOM*, J=9.1]; 4.63-4.71 [1H, m, >*CHOH*]; 4.57 & 4.60 [2H, AB system, $-OCH_2Ph$, J=11.9]; 4.78 & 4.80 [2H, AB system, $-OCH_2O$ -, J=6.8]; 7.28-7.36 [10H, m, aromatics]. - (2S, 3R)-1-[(t-Butyldiphenylsilyl)oxy]-2-phenyldec-4-yn-3-ol 12j. R_f 0.42 (PE: Et₂O 8:2). I.r.: v_{max} 3676, 3595, 2956, 2930, 2859, 2395, 1599, 1463, 1391, 1112, 1054. GC-MS: R_t 11.47; m/z 427 (M+· 57, 0.5), 289 (11). 253 (6), 229 (7). 223 (6), 211 (8), 201 (5), 200 (19), 199 (100), 197 (7), 181 (5), 155 (21), 137 (7), 135 (12). 105 (6), 104 (15), 91 (9), 77 (6). 1 H-n.m.r.: δ 0.88 [3H, t, $CH_3(CH_2)_4$ -, J=6.8]; 1.05 [9H, s, -C(CH_3)₃]; 1.23-1.52 [6H, m, $CH_3(CH_2)_3CH_2$ -]; 2.23 [2H, dt, - $CH_2C\equiv C$ -, J=7.0, 2.1]; 3.24 [1H, d, -OH, J=8.3]; 3.25 [1H, centre of m, >CHPh]; 3.92 [1H, dd, -CHHOBOM, J=9.9, 4.7]; 4.36 [1H, t, -CHHOBOM, J=9.6]; 4.79[1H, centre of m, >CHOH]; 7.22-7.69 [15H, m, aromatics]. General procedure for the reduction of ketones with a) DIBALH/MgBr₂ and b) DIBALH. Ketone (200-300 µmol) was dissolved in dry Et₂O (5-7.5 ml) and stirred 15 min at r. t. in the presence of 24-37 mg of powdered 4Å molecular sieves, before being cooled to -50°C. At this point in procedure a) 5 equivalents of MgBr₂·Et₂O were added and the mixture was stirred for 15 min at the same temperature; in procedure b) the solution was stirred for 15 min at -50°C, without any addition of reagents. Both reactions were then cooled to -78°C and treated with DIBALH (1 M in toluene, 2 equivalents). After stirring for 15-30 min saturated NH₄Cl was added; then the mixture was diluted with Et₂O and Rochelle's salt (aqueous saturated solution) and stirred at r. t. until two clear phases were obtained; finally, extraction with Et₂O and solvent removal gave crude alcohols 12 and 13, purified as above described. Yields are reported in Table 1. Reduction of 11a with NaBH₄. A solution of 11a (128 mg, 456.54 μ mol) in dry MeOH (4 ml) was cooled to -78°C and treated with NaBH₄ (86 mg, 2.28 mmol). After 30 min saturated aqueous NH₄Cl was added and the mixture was extracted with Et₂O. Preparative chromatography (PE: Et₂O 65:35) gave a mixture of 12a and 13a (see Table 1). **Reduction of 11a with NaBH₄/CeCl₃**. Procedure as above, but adding first an equimolar quantity of anhydrous) CeCl₃,²⁷ followed by 1 eq of NaBH₄. Reduction of 11a with $Zn(BH_4)_2$. A solution of 11a (106 mg, 378.08 μ mol) in dry Et_2O (5 ml) was stirred for 15 min at r. t. in the presence of 25 mg of powdered 4Å molecular sieves, then cooled to -20°C and treated with $Zn(BH_4)_2$ (7.56 ml of a 0.15 M sol in Et_2O). After 30 min work-up as above. **General procedure for Mosher's esters formation**. Alcohol (4-6 mg) was dissolved in dry CH_2Cl_2 (0.5-1 ml) and treated with 6 equivalents of 4-N,N-dimethylaminopyridine and 3 equivalents of (R)- or (S)-Mosher chloride. After 1 h the solution was directly purified by preparative chromatography (usually using PE : Et_2O 8:2), without aqueous work-up. General procedure for transformation of -OBn & -OBOM into -OH. A solution of 12 in EtOH (5 ml / 50 mg of substrate) was treated with 10% Pd/C (about 150 mg of catalyst / mmol of substrate) and hydrogenated overnight. The catalyst was filtered off and the solution concentrated *in vacuo* to give the corresponding diol as a white solid, used as such for the next reaction. Of course, during this reaction also double and triple bonds were idrogenated to give the corresponding saturated compounds (see alcohols 12 & 13a, b, g, i). General procedure for transformation of -OTBDPS into -OH. A solution of 12 or 13 (200-300 μ mol) in dry THF (5 ml) was treated with 3 equivalents of n-Bu₄N⁺F⁻ (0.5 M in THF) and the resulting solution was stirred at r. t. for 30 min. The mixture was partitioned between brine and Et₂O and extracted. Crude product was purified by preparative chromatography (PE: Et₂O 3:7) to give a white solid. Yield: about 85%. General procedure for O,O-iso-propylidene formation. A solution of diol from the above described reactions (200-300 μ mol) in dry CH₂Cl₂ (5 ml) was cooled to 0°C and treated with 3 equivalents of 2-methoxypropene, followed by 0.02 equivalents of p-TSA (0.1 M sol in THF). After 10 min the reaction was usually complete. Triethylamine (3.5 equivalents) was added and the mixture was concentrated and directly purified by preparative chromatography (PE: Et₂O 95:5) to give the corresponding O,O-iso-propylidene derivative. Yield: 54-85% (see Table 3 for selected spectroscopic data). General procedure for organometal addition to ketones 11 b-f, k. A solution of ketone (250-380 μ mol) in dry THF (5 ml) was cooled to -78°C and treated with an excess of the desired organometal (3-5 equivalents; see preparation of 11a-k for employed organometal solutions; propargyl-MgBr used was a 1.36 M sol in Et₂O). After 1 h
quenching with aqueous saturated NH₄Cl and extraction with Et₂O furnished the crudeproduct. Chromatography (PE: Et₂O 8:2 \rightarrow 1:1) gave a mixture of 16 and 17. For determination of $[\alpha]_D$ the mixture of epimeric alcohols was purified again by preparative chromatography. Yields and $[\alpha]_D$ values Table 3: selected ¹H-n.m.r. & ¹³C-n.m.r. data of O,O-iso-propylidene derivatives | ¹ H-n.m.r. | | | | | | | | | | | | |-----------------------|----------|------------------------|--------------------|--------------------|--------------------|-------------------|----------------|--|--|--|--| | parent alcohol; | R | <i>H</i> ₃ | H ₄ | H _{5a} | H _{5b} | H ₇ | H ₈ | | | | | | product | | (J) | (J) | (J) | (J) | (H ₈) | (H_7) | | | | | | 12a,b; 14 | n-Pr | 4.19 dt; 6.1, 3.4 | 2.50 dt; 3.6, 1.7 | 3.88 dd; 11.7, 1.7 | 4.36 dd; 11.7, 4.0 | 1.55 s | 1.54 s | | | | | | 12c,d; 14 | n-Bu | 4.16 dt; 6.2, 3.3 | 2.51 dt; 3.6, 1.6 | 3.87 dd; 11.6, 1.7 | 4.35 dd; 11.6, 3.8 | 1.54 s | 1.54 s | | | | | | 12e,f; 14 | Ph | 5.43 d; 3.4 | 2.83 dt; 3.6, 1.2 | 4.10 dd; 11.7, 1.4 | 4.57 dd; 11.8, 3.7 | 1.66 s | 1.66 s | | | | | | 12g; 14 | Et | 4.08 dt; 6.7, 3.4 | 2.54 dt; 3.8, 1.8 | 3.88 dd; 11.7, 1.8 | 4.36 dd; 11.7, 4.0 | 1.56 s | 1.56 s | | | | | | 12h; 14 | vinyl | 4.76 dd; 6.2, 3.7 | 2.62 dt; 3.7, 1.5 | 3.92 dd; 11.8, 1.6 | 4.42 dd; 11.7, 3.8 | 1.60 s | 1.57 s | | | | | | 12i; 14 | n-heptyl | 4.16 dt; 6.2, 3.4 | 2.51 dt; 3.6, 1.7 | 3.87 dd; 11.7, 1.7 | 4.35 dd; 11.7, 4.0 | 1.55 s | 1.55 s | | | | | | 12j; 14 | heptynyl | 5.07 dt; 4.0, 2.0 | 2.85 q; 4.0 | 4.06 dd; 11.8, 3.8 | 4.27 dd; 11.9, 4.1 | 1.60 s | 1.55 s | | | | | | 13a, b; 15 | n-Pr | 4.00-4.08 ^a | 2.75 dt; 10.9, 5.5 | 3.82 dd; 11.7, 5.5 | 3.96 t; 11.4 | 1.58 s | 1.46 s | | | | | | 13c, d; 15 | n-Bu | 4.01 dt; 10.3, 5.1 | 2.75 dt; 10.8, 5.5 | 3.82 dd; 11.7, 5.4 | 3.96 t; 11.3 | 1.58 s | 1.46 s | | | | | | 13e, f; 15 | Ph | 5.02 d; 10.5 | 3.06 dt; 10.8, 5.2 | 3.97 dd, 11.8, 5.2 | 4.23 t; 11.6 | 1.72 s | 1.58 s | | | | | | 13g; 15 | Et | 3.96 ^a | 2.77 dt; 10.9, 5.5 | 3.83 dd; 11.6, 5.4 | 3.98 t; 11.4 | 1.59 s | 1.46 s | | | | | | 13h; 15 | vinyl | 4.54 dd; 10.5, 5.0 | 2.82 dt; 10.8, 5.8 | 3.87 dd; 11.6, 5.6 | 4.05 t; 11.5 | 1.64 s | 1.51 s | | | | | | 13i; 15 | n-heptyl | 4.13 dt; 10.2, 5.1 | 2.75 dt; 10.9, 5.4 | 3.82 dd; 11.7, 5.5 | 3.96 t; 11.4 | 1.58 s | 1.46 s | | | | | | 13j; 15 | heptynyl | 4.78 dt; 10.7, 1.9 | 3.06 dt; 10.8, 5.3 | 3.90 dd; 11.9, 5.3 | 4.04 t; 11.4 | 1.60 s | 1.52 s | | | | | | ¹³ C-n.m.r. | | | | | | | | | | |----------------------------|----------|---------------------|------------------|-----------------------|--------|-------|-------|----------------|-------------------| | parent alcohol;
product | R | C_I | $\overline{C_2}$ | <i>C</i> ₃ | C3' | C4 | C_5 | C ₇ | C ₈ | | | | | | | | | | (C_8) | (C ₇) | | 12a,b; 14 | n-Pr | 126.46 | 98.88 | 70.94 | 35.66 | 43.95 | 65.59 | 29.40 | 19.14 | | 12c,d; 14 | n-Bu | 126.46 | 98.88 | 71.30 | 33.24 | 43.89 | 65.60 | 29.43 | 19.15 | | 12e,f; 14 | Ph | 126.76 ^b | 99.36 | 73.40 | 139.76 | 45.46 | 65.37 | 29.66 | 18.92 | | 12g; 14 | Et | 126.50 | 98.91 | 72.86 | 26.52 | 43.48 | 65.57 | 29.44 | 19.15 | | 12h; 14 | vinyl | 126.53 | 98.98 | 72.85 | 137.15 | 44.26 | 65.18 | 29.48 | 19.09 | | 12i; 14 | n-heptyl | 126.46 | 98.88 | 71.28 | 33.52 | 43.84 | 65.59 | 29.43 | 19.14 | | <u>12j; 1</u> 4 | heptynyl | 126.75 | 99.45 | 64.35 | 88.49 | 44.32 | 63.86 | 28.01 | 21.21 | | 13a, b; 15 | n-Pr | 127.03 | 98.36 | 73.03 | 35.55 | 47.59 | 65.78 | 29.71 | 19.47 | | 13c, d; 15 | n-Bu | 127.02 | 98.37 | 73.26 | 33.17 | 47.57 | 65.76 | 29.71 | 19.47 | | 13e, f; 15 | Ph | 127.05 ^c | 98.89 | 77.21 | 137.98 | 49.21 | 65.35 | 29.83 | 19.37 | | 13g; 15 | Et | 127.06 | 98.39 | 74.57 | 26.32 | 47.10 | 65.65 | 29.72 | 19.49 | | 13h; 15 | vinyl | 127.20 | 98.44 | 74.66 | 136.32 | 47.39 | 65.31 | 29.72 | 19.39 | | 13i; 15 | n-heptyl | 127.03 | 98.38 | 73.28 | 33.47 | 47.60 | 65.78 | 29.72 | 19.49 | | 13j; 15 | heptynyl | 127.36 | 98.94 | 65.79 | 86.89 | 47.93 | 64.89 | 29.55 | 19.16 | <u>Note</u>: a) molteplicity can not be determinated because of overlapping of signals; b) interchangeable with 126.17 of the other Ph; c) interchangeable with 127.05 of the other Ph. for compounds 16 are reported in Table 2. The isolated alcohols were always colourless oils. (3*R*, 4*S*)-5-[(Benzyloxy)methoxy]-3-ethyl-4-phenylpent-1-en-3-ol 16a (\mathbb{R}^1 = Et, \mathbb{R}^2 = vinyl). R_f 0.39 (PE : Et₂O 7:3). I.r.: v_{max} 3599, 3505, 2970, 2936, 2881, 1601, 1490, 1452, 1380, 1192, 1164, 1107. GC-MS: R_f 7.90; m/z 326 (M++-30, 0.01), 191 (0.7), 189 (0.7), 188 (0.3), 175 (0.2), 159 (0.4), 145 (0.4), 143 (0.4), 138 (0.5), 137 (6), 105 (10), 104 (100), 92 (5), 91 (40), 43 (8). ¹H-n.m.r.: δ 0.78 [3H, t, CH₃CH₂-, 7.4]; 1.41 [2H, q, CH₃CH₂-, J=7.4]; 2.48 [1H, s, -OH]; 2.93 [1H, X part of ABX system. >CHPh, J_{AX} & J_{BX}:=4.1, 7.3]; 3.97 & 4.09 [2H, AB part of ABX system. -CH₂OBOM, J_{AB}=9.7, J_{AX} & J_{BX}=4.1, 7.3]; 4.40 [2H, s, -OCH₂Ph]; 4.65 & 4.70 [2H, AB system, -OCH₂O-, J=6.8]; 5.24 [1H, dd. -CH=CHH cis to -CH=CH₂, J=10.6, 1.7]; 5.35 [1H, dd, -CH=CHH trans to -CH=CH₂, J=17.2, 1.7]; 5.84 [1H, dd. -CH=CH₂, J=17.2, 10.7]; 7.22-7.42 [10H, m, aromatics]. ¹³C-n.m.r.: δ 7.57 [CH₃CH₂-]; 31.82 [CH₃CH₂-]; 53.74 [>CHPh]; 69.39 & 69.67 [-CH₂OBOM & -OCH₂Ph]; 76.39 [probable location of >C(OH)Et together with one signal of CDCl₃]; 94.62 [-OCH₂O-]; 114.00 [-CH=CH₂]; 126.84 & 127.66 [2 >CH- para in both aromatics]; 127.87, 128.06, 128.34 & 129.89 [2 >CH- ortho & meta in both aromatics]: 137.59 [C ipso of -OCH₂Ph]; 139.64 [C ipso of Ph-CH(CH₂OBOM)-]; 142.49 [-CH=CH₂]. - (2*S*, 3*R*)-1-[(Benzyloxy)methoxy]-3-ethyl-2-phenylhex-5-en-3-ol 16b (R¹ = Et, R² = allyl) or 17g (R¹ = allyl, R² = Et). R_f 0.37 (PE : Et₂O 7:3). I.r.: v_{max} 3519, 3001, 2936, 2882, 1639, 1601, 1452, 1380, 1110, 1041. GC-MS: R_f 8.25; m/z 281 (M+··· 59, 0.03), 251 (1.0), 233 (0.7), 191 (4.3), 161 (1.8), 143 (1.1), 137 (6), 130 (2.7), 121 (1.9), 119 (1.2), 107 (1.6), 105 (10), 104 (100), 92 (6), 91 (54), 57 (26). ¹H-n.m.r.: δ 0.86 [3H, t, CH₃CH₂-, J=7.4]; 1.37 [2H, q, CH₃CH₂-, J=7.4]; 2.36-2.42 [3H, m, -CH₂CH=CH₂ + -OH]; 3.02 [1H, X part of ABX system, >CHPh, J_{AX} & J_{BX}=4.5, 7.5]; 4.08 & 4.11 [2H, AB part of ABX system, -CH₂OBOM, J_{AB}=9.9, J_{AX} & J_{BX}=4.5, 7.5]; 4.46 [2H, s, -OCH₂Ph]; 4.70 & 4.73 [2H, AB system, -OCH₂O-, J=6.9]; 5.06-5.17 [2H, m, -CH=CH₂]; 5.88 [1H, ddt, -CH=CH₂, J=16.1, 11.4, 7.3]; 7.24-7.39 [10H, m, aromatics]. - (2S, 3R)-1-[(Benzyloxy)methoxy]-3-ethyl-2-phenylheptan-3-ol 16c (R¹ = Et, R² = n-Bu) or 17h (R¹ = n-Bu, R² = Et). R_f 0.27 (PE : Et₂O 8:2). I.r.: v_{max} 3515. 2955, 2940, 2874, 1601, 1453, 1380, 1192, 1107, 1039. GC-MS: R_f 8.60; m/z 281 (M+¹ 75, 0.01), 251 (0.4), 221 (0.5), 219 (0.8), 191 (2.1), 161 (0.5), 145 (0.5), 138 (0.4), 137 (3.7), 131 (0.4), 121 (1.3), 115 (4.5), 107 (1.3), 105 (10), 104 (100), 92 (3.8), 91 (32), 57 (4.4), 55 (4.4). ¹H-n.m.r.: δ 0.82 [3H, t, CH₃CH₂-, J=7.4]; 0.92 [3H, t, CH₃(CH₂)₃-, J=6.2]; 1.24-1.61 [8H, m, -CH₂- of Et & n-Bu]; 2.20 [1H, s, -OH]; 3.00 [1H, X part of ABX system, >CHPhJ_{AX} & J_{BX}=4.6, 7.4]; 4.04 & 4.12 [2H, AB part of ABX system, -CH₂OBOM, J_{AB}=9.8, J_{AX} & J_{BX}=4.6, 7.4.]; 4.45 [2H, s, -OCH₂Ph]; 4.70 & 4.72 [2H, AB system, -OCH₂O-, J=6.9]; 7.24-7.39 [10H, m. aromatics]. ¹³C-n.m.r.: δ 7.64 [CH₃CH₂-]; 14.11 [CH₃(CH₂)₃-]; 23.32 [CH₃CH₂CH₂CH₂-]; 25.86 [CH₃CH₂CH₂CH₂-]; 29.50 [CH₃CH₂-]; 36.07 [CH₃CH₂CH₂CH₂-]; 51.71 [>CHPh]; 69.07 & 69.49 [-CH₂OBOM & -OCH₂Ph]; 76.16 [>C(OH)Et]; 94.67 [-OCH₂O-]; 126.64 & 127.67 [2 > CH- para in both aromatics]: 128.09, 128.31, 128.36 & 129.66 [2 > CH- ortho & meta in both aromatics]; 137.61 [C ipso of -OCH₂Ph]; 140.46 [C ipso of Ph-CH(CH₂OBOM)-]. - (15, 25)-3-[(Benzyloxy)methoxy]-1-ethyl-1,2-diphenylpropan-1-ol 16d (\mathbb{R}^1 = Et, \mathbb{R}^2 = Ph) or 17i (\mathbb{R}^1 = Ph, \mathbb{R}^2 = Et). Also in this case some PhOH was obtained and eliminated as above described for compound 11e. R_f 0.28 (PE : Et₂O : CH₂Cl₂ 8:1:1). I.r.: v_{max} 3498, 2964, 2932, 2878, 1953, 1718, 1600, 1452, 1380, 1245, 1112, 1050. GC-MS: R_t 9.42; m/z 299 (M^+ 77, 0.06), 241 (0.5), 137 (4.2), 135 (9), 105 (13), 104 (100), 103 (3.0), 92 (2.6), 91 (22), 77 (4.1), 57 (9). 1 H-n.m.r.: δ 0.99 [3H, t, CH_3CH_2 -, J=7.2]; 1.62 [2H, centre of m, CH₃CH₂-]; 3.05 [1H, s, -OH]; 3.27 [1H, dd, >CHPh, J=7.0, 3.4]; 3.65 [1H, dd, -CHHOBOM, J=9.8, 3.4]; 3.89 [1H, dd, -CHHOBOM, J=9.8, 7.1]; 4.26 [2H, s, -OCH₂Ph]; 4.50 & 4.55 [2H, AB system, -OCH₂O-, J=6.8]; 7.10-7.53 [15H, m, aromatics]. - (2*S*, 3*S*)-1-[(Benzyloxy)methoxy]-3-ethyl-2-phenylhept-5-yn-3-ol 16e (\mathbb{R}^1 = Et, \mathbb{R}^2 = propargyl). R_f 0.46 (PE : Et₂O 7:3). I.r.: v_{max} 3499, 3304, 3002, 2967, 2944, 2395, 1602, 1453, 1380, 1110, 1042, 1026. GC-MS: R_f 11.25; m/z 281 (\mathbb{M}^+ 57, 0.02), 251 (0.6), 233 (0.5), 203 (0.5), 191 (3.1), 181 (0.6), 170 (0.6), 161 (1.1), 143 (1.8), 141 (1.2), 137 (6), 105 (10), 104 (100), 92 (6), 91 (49), 57 (16). 1 H-n.m.r.: δ 0.89 [3H, t, C H_3 CH₂-, - J=7.4]; 1.53 [2H, q, CH₃CH₂- , J=7.5]; 2.10 [1H, t, -C \equiv CH]; 2.39 & 2.53 [2H, AB part of ABX system, -CH₂C \equiv CH, J_{AB}=16.9, J_{AX} & J_{BX}=2.7, 2.6]; 2.81 [1H, s, -OH]; 3.31 [1H, t, >CHPh, J=6.0]; 4.13 [2H, d, -CH₂OBOM, J=6.2]; 4.48 [2H, s, -OCH₂Ph]; 4.73 & 4.75 [2H, AB system, -OCH₂O-, J=6.9]; 7.25-7.41 [10H, m, aromatics]. - (2*S*, 3*S*)-1-[(Benzyloxy)methoxy]-3-ethyl-2-phenyldec-5-yn-3-ol 16f (\mathbb{R}^1 = Et, \mathbb{R}^2 = heptynyl) or 17j (\mathbb{R}^1 = heptynyl, \mathbb{R}^2 = Et). R_f 0.73 (PE : Et₂O 6:4). I.r.: v_{max} 3492, 3003, 2957, 2931, 2238, 1601, 1453, 1380, 1111, 1041. GC-MS: R_t 9.42; m/z 317 (\mathbb{M}^{++} 77, 0.02), 256 (3.7), 185 (1.6), 153 (5), 137 (1.8), 121 (1.3), 107 (1.3), 105 (10). 104 (100), 103 (4.0), 92 (3.5), 91
(30), 57 (11), 55 (3.3). $^1\mathrm{H}$ -n.m.r.: δ 0.90 [3H, t, $\mathrm{C}H_3(\mathrm{C}H_2)_4$ -, J=7.0]; 1.03 [3H, t, $\mathrm{C}H_3(\mathrm{C}H_2)$ -, J=7.3]; 1.25-1.59 [8H, m, $\mathrm{C}H_3(\mathrm{C}H_2)$ & $\mathrm{C}H_3(\mathrm{C}H_2)_3\mathrm{C}H_2\mathrm{C}\equiv$]; 2.22 [2H, t, - $\mathrm{C}H_2\mathrm{C}\equiv$, J=7.0]; 2.79 [1H, s, -OH]; 3.04 [1H, X part of ABX system, > $\mathrm{C}H_2\mathrm{Ph}$, J_{AX} & J_{BX}=3.7, 7.3]; 4.12 & 4.38 [2H, AB part of ABX system, - $\mathrm{C}H_2\mathrm{OBOM}$, J_{AB}=9.7, J_{AX} & J_{BX}=7.3, 3.7]; 4.45 [2H, s, -OC $H_2\mathrm{Ph}$]; 4.73 [2H, s, -OC $H_2\mathrm{O}$ -]; 7.22-7.48 [10H, m, aromatics]. - (2*S*, 3*S*)-1-[(Benzyloxy)methoxy]-3-ethyl-2-phenylhex-5-en-3-ol 16g (\mathbf{R}^1 = allyl, \mathbf{R}^2 = Et) or 17b (\mathbf{R}^1 = Et, \mathbf{R}^2 = allyl). R_f 0.31 (PE : Et₂O 7:3). I.r.: \mathbf{v}_{max} 3473, 2939, 2873, 2234, 1953, 1809, 1730, 1602, 1453, 1380, 1164, 1105, 1045. GC-MS: R_f 8.28; m/z 281 (M^{++} 59, 0.04), 251 (1.0), 233 (0.7), 205 (0.6), 203 (0.6), 191 (3.7), 161 (1.8), 145 (0.7), 143 (1.2), 138 (0.6), 137 (6), 105 (11), 104 (100), 92 (6), 91 (55), 57 (25). 1 H-n.m.r.: δ 0.94 [3H. t, CH_3CH_2 -, J=7.4]: 1.56-1.67 [2H, m, CH_3CH_2 -]; 2.09-2.17 [2H, m, $-CH_2CH$ =CH₂]; 2.38 [1H, s, -OH]: 3.04 [1H. X part of ABX system, >CHPh. J_{AX} & J_{BX} =4.6, 7.6]; 4.06 & 4.10 [2H, AB part of ABX system, $-CH_2OBOM$, J_{AB} =9.8, J_{AX} & J_{BX} =4.6, 7.6]; 4.45 [2H, s, $-OCH_2$ Ph]; 4.70 & 4.72 [2H, AB system, $-OCH_2O$ -. J=6.9]; 4.49-5.08 [2H, m, -CH= CH_2]; 5.81 [1H, ddt, -CH= CH_2 , J=17.5, 10.3, 7.3]; 7.22-7.38 [10H, m, aromatics]. - (2*S*, 3*S*)-1-[Benzyloxy)methoxy]-3-ethyl-2-phenylheptan-3-ol 16h ($R^1 = n$ -Bu, $R^2 = Et$) or 17c ($R^1 = Et$, $R^2 = n$ -Bu). R_f 0.36 (PE: Et₂O 7:3). I.r.: v_{max} 3520. 2960, 2939, 2872, 1492, 1453, 1380, 1041, 1026. GC-MS: R_f 8.55; ndz 281 (M++- 59, 0.02), 219 (1.2), 191 (1.4), 145 (0.5), 137 (3.8), 121 (1.3), 120 (0.6), 119 (0.5), 117 (0.5), 115 (4.5), 105 (10), 104 (100), 92 (3.6), 91 (32), 59 (3.3), 57 (4.2), 55 (4.2). ¹H-n.m.r.: δ 0.83 [3H, t, $CH_3(CH_2)_3$ -, J=6.8]; 0.91 [3H, t, CH_3CH_2 -, J=7.4]; 1.34-1.30 [6H, m, $CH_3(CH_2)_3$ -]; 1.62 [2H, q, CH_3CH_2 -, J=7.8]; 2.21 [1H, s, -OH]; 3.01 [1H, X part of ABX system, >CHPh, J_{AX} & J_{BX} =4.9, 7.4]; 4.04 & 4.10 [2H, AB part of ABX system, - CH_2OBOM , J_{AB} =10.0, J_{AX} & J_{BX} =4.9, 7.4]; 4.45 [2H, s, -OC H_2Ph]; 4.70 & 4.72 [2H, AB system, -OC H_2O -, J=6.9]; 7.24-7.39 [10H, m, aromatics]. ¹³C-n.m.r.: δ 8.06 [CH_3CH_2 -]; 14.03 [$CH_3(CH_2)_3$ -]; 23.18 [$CH_3CH_2CH_2CH_2$ -]; 25.44 [$CH_3CH_2CH_2CH_2$ -]; 29.45 [CH_3CH_2 -]; 36.19 [$CH_3CH_2CH_2CH_2$ -]; 51.78 [>CHPh]; 69.11 & 69.54 [- CH_2OBOM & -O CH_2Ph]; 76.16 [>C(OH)E1]; 94.72 [- OCH_2O -]; 126.66 & 127.68 [2 >CH- para in both aromatics]; 127.84, 128.10, 128.38 & 129.66 [2 >CH- ortho & meta in both aromatics}; 137.67 [C ipso of -OCH₂Ph]; 140.45 [C ipso of Ph-CH(CH_2OBOM)-]. - (1*R*, 2*S*)-3-[(Benzyloxy)methoxy]-1-ethyl-1,2-diphenylpropan-1-ol 16i (R^1 = Ph, R^2 = Et) or 17d (R^1 = Et, R^2 = Ph). R_f 0.37 (PE : Et₂O 7:3). I.r.: v_{max} 3492, 3000, 2938, 2882, 1600, 1452, 1380, 1163, 1110, 1041. GC-MS: R_f 9.40: m/z 299 (M⁺ 77, 0.1), 241 (0.5), 239 (0.7), 137 (4.1), 136 (1.0), 135 (9), 121 (0.9), 120 (0.4), 117 (0.5), 115 (0.6), 107 (1.0), 106 (1.0), 105 (13), 104 (100), 103 (2.8), 92 (2.5), 91 (22), 57 (8). ¹H-n.m.r.: δ 0.74 [3H, t. CH_3CH_2 -, J=7.4]; 1.95 [2H, centre of m, CH_3CH_2 -]; 3.33 [1H, X part of ABX system, >*CHP*h, J_{AX} & J_{BX}=5.7, 7.1]; 3.69 [1H, s, -O*H*]; 3.90 & 4.00 [2H, AB part of ABX system, -*CH*₂OBOM, J_{AB}=9.8, J_{AX} & J_{BX}=5.7, 7.1]; 4.54 [2H, s, -O*CH*₂Ph]; 4.77 [2H, s, -O*CH*₂O-]; 6.88-7.38 [15H, m, aromatics]. - (2S, 3S)-1-[(Benzyloxy)methoxy]-3-ethyl-2-phenyldec-5-yn-3-ol 16j (R¹ = heptynyl, R² = Et) or 17f (R¹ = Et, R² = heptynyl). R_f 0.55 (PE : Et₂O 7:3). I.r.: v_{max} 3473, 2939, 2873, 2234, 1953, 1809, 1602, 1453, 1380, 1105, 1045. GC-MS: R_t 9.44; m/z 317 (M+··· 77, 0.03), 256 (3.8), 153 (5), 137 (1.9), 129 (1.1), 121 (1.4), 107 (1.3), 105 (11), 104 (100), 103 (4.1), 92 (3.9), 91 (32), 77 (3.1), 65 (3.2), 57 (10), 55 (3.6). ¹H-n.m.r.: δ 0.89 [3H, t, CH_3 4CH₂)₄-, J=7.2]; 0.97 [3H, t, CH_3 4CH₂-, J=7.7]; 1.21-1.56 [8H, m, CH_3 4CH₂-& CH₃(CH₂)₃CH₂C \equiv]; 2.25 [2H, t, -CH₂C \equiv , J=7.0]; 3.12 [1H, dd, >CHPh, J=10.2, 4.9]; 3.85 [1H, dd, -CHHOBOM, J=9.5, 4.9]; 4.33 [1H, s, -OH]; 4.50 [1H, t, -CHHOBOM, J=9.9]; 4.59 & 4.69 [2H, AB system, -OCH₂Ph, J=11.8]; 4.79 & 4.84 [2H, AB system, -OCH₂O-, J=6.8]; 7.26-7.40 [10H, m, aromatics]. ## General procedure for β -lactons & olefin formation from 16d and 16i. - 1) (2R, 3R)-3-Hydroxy-2,3-diphenylpentanoic acid 18 and (2R, 3R)-3-hydroxy-2,3-diphenylpentanoic acid 21. They were prepared by catalytic hydrogenation, followed by Jones oxidation of crude diol as reported in the general procedures above described starting from 16d and 16i respectively. The acids were purified by chromatography [PE : AcOEt 7:3 \rightarrow 1:1; then PE : AcOEt 1:1 with increasing amounts of AcOH (1-2%)]. Compound 18: white solid, yield: 73% from 16d. R_f 0.41 (PE : Et₂O 2:8). ¹H-n.m.r.: (DMSO-d₆) δ 0.50 [3H, t, CH_3CH_2 -, J=7.3]; 1.53 [2H, centre of m, CH_3CH_2 -]; 4.32 [1H, s, >CHPh]; 5.27 [1H, broad s, -CO₂H]; 7.30-7.79 [10H, m, aromatics]. Compound 21: white solid, yield: 57% from 16i. R_f 0.33 (PE : Et₂O 2:8). ¹H-n.m.r. (DMSO-d₆): δ 0.70 [3H, t, CH_3CH_2 -, J=7.3]; 2.15 [2H, centre of m, CH_3CH_2 -]; 4.11 [1H, s, >CHPh]; 5.20 [1H, broad s, -CO₂H]; 7.11-7.38 [10H, m, aromatics]. - 2) (3R, 4S)-4-Ethyl-3,4-diphenyloxetan-2-one 19 and (3R, 4R)-4-ethyl-3,4-diphenyloxetan-2-one 22. A solution of acid 18 or 21 (50 mg, 184.96 µmol) in dry pyridine (1 ml) was cooled at 0°C and treated with benzenesulfonylchloride (118 µl, 0.93 mmol). After 2 hrs the solution was diluted with H_2O/Et_2O and extracted. Combined organic phases were acidified to pH 2 by careful addition of 1 N HCl, then immediately washed with 5% NaHCO₃ and brine. Both 19 and 22 were characterized as crude products. Compound 19: R_f 0.68 (PE: Et₂O 9:1). I.r.: v_{max} 1796. ¹H-n.m.r.: δ 0.68 [3H, t. CH_3CH_2 -, J=7.3]; 1.75 [2H, centre of m. CH₃CH₂-]; 4.94 [1H, s, >CHPh]; 7.35-8.13 [10H + 5H, m, aromatics of 19 & PhSO₂Cl]. Compound 22: R_f 0.57 (PE: Et₂O 9:1). I.r.: v_{max} 1795. ¹H-n.m.r.: δ 0.94 [3H, t. CH_3CH_2 -, J=7.3]; 2.34 [2H, centre of m, CH₃CH₂-]; 4.86 [1H, s, >CHPh]; 7.58-8.08 [10H + 5H, m, aromatics of 22 & PhSO₂Cl]. - 3) (*E*)-1,2-diphenylbut-1-ene 20 and (*Z*)-1,2-diphenylbut-1-ene 23. Crude lactons were dissolved again in dry pyridine (1 ml). 19 Was heated at 60° 3 hrs, while 22 did not eliminate at the same temperature and had to be warmed to 110°C for 9 hrs. After above described work-up best results were obtained by characterization of crude mixture. From 19 we obtained a 87.4 : 12.6 mixture of 20 and 23 and from 22 we obtained a 83.7 : 16.3 mixture of 23 and 20 respectively. Compound 20: R_f 0.58 (PE). 1 H-n.m.r.: δ 1.06 [3H, t, CH_3CH_2 -, J=7.5]; 2.75 [2H, q, CH_3CH_2 -, J=7.6]; 6.69 [1H, s, CH_3CH_2 -, ## REFERENCES AND NOTES - 1. Harada, T.; Oku, A. Synlett. 1994, 95-104. - Some selected examples: a) Terao, Y.; Akamatsu, M.; Achiwa, K. Chem. Pharm. Bull. 1991, 39, 823-825; b) Banfi, L.; Guanti, G.; Narisano, E. J. Org. Chem. 1992, 57, 1540-1554 and references therein; c) Itoh. T.; Chika, J.; Takagi, Y.; Nishiyama, S. J. Org. Chem. 1993, 58, 5717-5723; d) Guanti, G.; Banfi, L.; Brusco, S.; Riva, R. Tetrahedron Lett. 1993, 34, 8549-8552; e) Guanti, G.; Banfi, L.; Brusco, S.; Narisano, E. Tetrahedron: Asymm. 1994, 5, 537-540; f) Guanti, G.; Riva, R. Tetrahedron Lett., 1995, 36, 3933-3936. - 3. Banfi, L.; Guanti, G. Synthesis 1993, 1029-1056. - Some examples: a) Guanti, G.; Banfi, L.; Riva, R.; Zannetti, M. T. Tetrahedron Lett. 1993, 34, 5483-5486; b) Guanti, G.; Banfi, L.; Zannetti, M. T. Tetrahedron Lett. 1993, 34, 5487-5490; c) Guanti, G.; Banfi, L.; Merlo, V.; Narisano, E. Tetrahedron 1994, 50, 2219-2230. - 5. Banfi, L.; Guanti, G.; Riva, R. Tetrahedron: Asymm. 1995. 6. 1345-1356. - 6. **a**) Didier, E.; Loubinoux, B.; Ramos Tombo, G. M.; Rihs, G. *Tetrahedron* **1991**, 47, 4941-4958; **b**) Chênevert, R.; Desjardins, M. *Can. J. Chem.* **1994**, 72, 2312-2317. - 7. It must be pointed out that both enantiomers of alcohols 3, 4 can be obtained either: a) starting from (S) or (R) 1 or b) by a longer protection-deprotection strategy (similar to that employed for the synthesis of 2. - 8. The (R) enantiomer could be however synthesized starting from easily available (R)-1. - 9. Employed reaction conditions represent the best compromise between chemical yield and minimization of elimination side reaction to give 2-substituted styrene derivatives. - 10. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981. - a) Wong, S. S.; Paddon-Row, M. N. J. Chem. Soc., Chem. Commun. 1990, 456-458; b) Wu, Y.-D.; Tucker, J. A.; Houk, K. N. J. Am. Chem. Soc. 1991, 113, 5018-5027. - a) Midland, M. M.; Kwon, Y. C. J. Am. Chem. Soc. 1983, 105, 3725-3727; for the related reduction of α-alkenyl-α-methyl ketones see b) Suzuki, K.; Katayiama, E.; Tsuchihashi, G. Tetrahedron Lett. 1984, 25, 2479-2482. - 13. For definition of "chelating" and "non-chelating" protecting group see ref. 4a. - 14. A characteristic trend was observed for chemical shifts (¹H and ¹³C-n.m.r.) and coupling constants for some selected protons and carbons as reported in Table 3. Our findings are in line with previous reported data (see ref. 4a). - 15. Notice that 16b = 17g, 16c = 17h, 16d = 17i, 16f = 17i, 16g = 17b, 16h = 17c, 16i = 17d, 16j = 17f. - 16. Banfi, L.; Guanti, G.; Narisano, E. *Tetrahedron* **1993**, *49*, 7385-7392. Further modifications of this
procedure were explored, using different tertiary amines, but only with limited success. - To our knowledge only few examples of addition of organometals to β-hydroxy ketones bearing a chiral centre in the α position have been published until now: a) Maurer, P. J.; Knudsen, C. G.; Palkowitz, A. D.; Rapoport, H. J. Org. Chem. 1985, 50, 325-332; b) Chikashita, H.; Nakamura, Y.; Uemura, H.; Itoh, K. Chem. Lett. 1992, 439-440; c) Maruoka, K.; Oishi, M.; Shiohara, K.; Yamamoto, H. Tetrahedron 1994, 50, 8983-8996; d) Paterson, I.; Wallace, D. J. Tetrahedron Lett. 1994, 35, 9087-9090; e) Guanti, G., Ageno, G.; Banfi, L.; Riva, R.; Rocca, V.; Cascio, G.; Manghisi, E. Tetrahedron, in the press. - 18. Not always we got complete reaction; a possible explanation is probably the different tendency to enolization of these compounds, which probably occurs at the less hindered position, as demonstrated by the fact that unreacted recovered ketone maintained its optical purity. - 19. Adam, W.; Baeza, J.; Liu, J.-C. J. Am. Chem. Soc. 1972, 94, 2000-2006. - 20. James, B. G.: Pattenden, G. J. Chem. Soc., Perkin Trans 1, 1974, 1205-1208. - 21. Mulzer, J. in Comprehensive Organic Synthesis, Pergamon Press Ed., Oxford, 1991, 6, p. 346. - 22. Noyce, D. S.; Banitt, E. H. J. Org. Chem. 1966, 31, 4043-4047. - 23. Nagao, Y.; Lee, W.-S.; Kim, K. Chem. Lett. 1994, 389-392. - 24. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925. - 25. Guanti, G.; Narisano, E.; Podgorski, T.; Thea, S.; Williams, A. Tetrahedron 1990, 46, 7081-7092. - 26. Bowers, A.; Halsall, T. G.; Jones, E. R. H.; Lemin, A. J. J. Chem. Soc., 1953, 2548-2560. - 27. Imamoto. T.; Takiyama, N.; Nakamura, K. Tetrahedron Lett., 1985, 26, 4763-4766.